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ABSTRACT:
Acoustic vector sensors allow estimating the direction of travel of an acoustic wave at a single point by measuring

both acoustic pressure and particle motion on orthogonal axes. In a two-dimensional plane, the location of an acous-

tic source can thus be determined by triangulation using the estimated azimuths from at least two vector sensors.

However, when tracking multiple acoustic sources simultaneously, it becomes challenging to identify and link

sequences of azimuthal measurements between sensors to their respective sources. This work illustrates how two-

dimensional vector sensors, deployed off the coast of western Maui, can be used to generate azimuthal tracks from

individual humpback whales singing simultaneously. Incorporating acoustic transport velocity estimates into the

processing generates high-quality azimuthal tracks that can be linked between sensors by cross-correlating features

of their respective azigrams, a particular time-frequency representation of sound directionality. Once the correct azi-

muthal track associations have been made between instruments, subsequent localization and tracking in latitude and

longitude of simultaneous whales can be achieved using a minimum of two vector sensors. Two-dimensional tracks

and positional uncertainties of six singing whales are presented, along with swimming speed estimates derived from

a high-quality track. VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0009165
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I. INTRODUCTION

Each winter, humpback whales (Megaptera novaean-
gliae) congregate in their respective breeding grounds in

tropical waters around the globe. At these gatherings, males

produce long sequences of structured vocalizations referred

to as songs (Payne and McVay, 1971; Au et al., 2006). Song

is believed to play an important function in the mating sys-

tem of humpback whales by signaling to females and medi-

ating male–male interactions (Darling et al., 2006; Herman,

2017; Cholewiak et al., 2018). Despite having been studied

since the early 1970s, many aspects of humpback whale

singing remain poorly understood and the exact way in

which song mediates whale interactions is still unclear.

While the recent advancements of bioacoustic tags have

allowed documenting fine-scale acoustic behavior of spe-

cific individuals in many marine mammal species (Schmidt

et al., 2010; Goldbogen et al., 2014; Stimpert et al., 2020),

tagging remains logistically expensive, yields low sample

sizes, and does not always allow attribution of detected calls

to the tagged whale. Passive acoustic localization and track-

ing is a complementary approach to tagging as it is non-

invasive and allows addressing ongoing research questions

on a larger scale (Noad et al., 2004; Schmidt et al., 2010;

Stanistreet et al., 2013; Helble et al., 2015; Helble et al.,

2016; Guazzo et al., 2017; Henderson et al., 2018). If few

whales are present at a time, a network of widely spaced

hydrophones can be used to track their position using time-

of-arrival techniques on calls that are detected on at least

three sensors (Schau and Robinson, 1987; Spiesberger,

2001). However, when large numbers of singing humpback

whales are present, such as on their breeding grounds off

Hawaii (Au et al., 2000), their songs dominate the ambient

noise field. Because the overlap in time and in frequency

hinders signal extraction from individual whales, conven-

tional localization techniques (e.g., time-domain cross corre-

lation between sensors) become impractical.

Developed during the second half of the 20th century,

acoustic vector sensors were originally used in U. S. Navy

operations for detecting and localizing submarines, primar-

ily through their use of directional frequency analysis

recording (DIFAR) sonobuoys (Holler, 2014). In recent

years, they have been developed into commercial recording

packages and are used for a variety of passive acoustic mon-

itoring applications (Greene et al., 2004; Raghukumar et al.,
2020). In addition to measuring acoustic pressure like con-

ventional hydrophones, vector sensors also measure particle

motion, allowing them to estimate the dominant direction of

travel of acoustic energy from a single point (D’Spain et al.,
1991; D’Spain et al., 2006; Martin et al., 2016). This ability

permits triangulation of acoustic sources using multiple vec-

tor sensors. In addition to requiring a minimum of only twoa)Electronic mail: ltenorio@ucsd.edu
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sensors, this approach is also highly advantageous when

compared to time-of-arrival techniques required by conven-

tional hydrophones, as triangulation does not require precise

time-synchronization between independent autonomous sen-

sor packages. However, while triangulation is relatively

straightforward to execute and automate in the presence of

few sources producing stereotyped signals (Greene et al.,
2004; Thode et al., 2012; Thode et al., 2021), it becomes

challenging to apply when trying to track multiple non-

stereotyped sources, such as singing humpback whales.

Data from vector sensors can be processed in a variety

of ways, including additive beamforming of the pressure

and velocity channels (McDonald, 2004), or by multiplica-

tive processing, where the pressure and velocity channels

are multiplied together to model the acoustic intensity

(D’Spain et al., 1991). The speed of the latter approach

makes it possible to display the dominant directionality of

an ambient noise field as a function of time and frequency, a

display that has been exploited many times and has recently

been nicknamed an “azigram” when applied to biological

studies (Thode et al., 2019). One of the key advantages of

the azigram versus a conventional spectrogram is that it

allows individual sources to be distinguished based on their

location. Another key vector sensor metric, the acoustic

transport velocity, also describes the directional properties

of an acoustic field. This quantity, which will be defined in

Sec. II, gives insight into the spatial distribution of the acous-

tic sources generating an ambient acoustic field. It allows dif-

ferentiation between directional sources (such as a whale or

a boat) and diffuse background ambient sound that arises

from numerous simultaneous sources from multiple direc-

tions (D’Spain et al., 1991; Schiffrer and Stanzial, 1994).

In this study, we exploit the directional capabilities of

vector sensors to track multiple singing humpback whales

simultaneously, despite substantial overlap in their songs.

We demonstrate this method on data collected off the coast

of western Maui during the late breeding season in 2020,

using modified DIFAR vector sensors (which measure hori-

zontal particle velocity in two orthogonal directions) that

enable two-dimensional (latitude and longitude) localization

and tracking of whales. Section II presents the theory related

to vector sensors relevant to this work, including the key

metrics of dominant directionality and transport velocity.

Section III gives an overview of the instruments, the deploy-

ment, and the demonstration dataset. Section IV details the

tracking method, along with examples and results illustrat-

ing the different steps of the algorithm. Finally, Sec. V

presents tracking results for six whales and derives the

track-derived swimming speed for one singer.

II. VECTOR SENSOR THEORY

Different quantities can be used to describe an acoustic

field. In underwater acoustics, the most prevalent metric is

acoustic pressure, which is easily measured underwater with

a conventional hydrophone. This scalar quantity represents

the amount of compression between particles in the medium

and is also the quantity measured by both terrestrial and

marine mammal ears (Popper et al., 2000). However, mea-

surements of acoustic pressure alone are insufficient for

uniquely characterizing an acoustic wave traveling through

a point. Also, required are measurements of particle motion,

a vector that quantifies the movement of the particles as

sound travels through the medium, and can be expressed in

terms of displacement, velocity, or acceleration. Vector sen-

sors are designed to measure both acoustic pressure and par-

ticle velocity along two or three orthogonal axes.

The instantaneous acoustic intensity along a given axis

k is defined as

Ik ¼ pvk; (1)

where p and vk are the time series of acoustic pressure and

particle velocity along axis k. If the acoustic field is com-

prised by a single plane wave arriving from a distant, domi-

nant, and spatially compact source, then the magnitude of the

particle velocity is proportional to and in phase with the pres-

sure. Equation (1) then reduces to a form where the squared

pressure alone yields the intensity magnitude. However, since

vector sensors measure pressure and particle motion indepen-

dently, they provide direct measurements of the true underly-

ing acoustic intensity, even in circumstances where the

acoustic field is not dominated by a single plane wave.

The frequency-domain acoustic intensity Sk can be esti-

mated at time-frequency bin T; fð Þ as

Sk T; fð Þ ¼ P T; fð ÞV�k T; fð Þ
� �

� Ck T; fð Þ þ iQk T; fð Þ; (2)

where P and Vk are short-time fast Fourier transforms

(FFTs) of p and vk; respectively (Mann et al., 1987). The

symbol � denotes the complex conjugate of a complex num-

ber, and h i represents the ensemble average of a statistical

quantity. If a time series can be considered to be statistically

ergodic over a given time interval, this ensemble average

can be obtained from time-averaging consecutive FFTs

(D’Spain et al., 1991). In practice, ambient acoustic fields

are often highly nonstationary, but a short enough time

interval can typically be found where the ergodicity assump-

tion is valid. In Eq. (2), Ck and Qk are defined as the active

and reactive acoustic intensities, respectively, and they com-

prise the in-phase and in-quadrature components of the pres-

sure and particle velocity. The active intensity Ck comprises

the portion of the field where pressure and particle velocity

are in phase and thus, are transporting acoustic energy

through the measurement point. The reactive intensity Qk

comprises the portion of the field where pressure and parti-

cle velocity are 90� out of phase and arises whenever a spa-

tial gradient exists in the acoustic pressure (Mann et al.,
1987). For the rest of this paper, we ignore the reactive com-

ponent of intensity, and use the active component to define

two directional metrics: the dominant azimuth and the nor-

malized transport velocity (NTV).

In the case of a two-dimensional vector sensor that mea-

sures particle velocity along the x and y axis, the dominant
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azimuth from which acoustic energy is arriving, u, is

defined as

u T; fð Þ ¼ tan�1 Cx T; fð Þ
Cy T; fð Þ ; (3)

where u is expressed in geographical terms: increasing

clockwise and starting from the y axis. The dominant azi-

muth can then be displayed as a function of both time and

frequency as an image nicknamed an “azigram” (Thode

et al., 2019).

It is important to note that Eq. (3) estimates only the

dominant azimuth since acoustic energy may be arriving

from different azimuths simultaneously at the measurement

point. Equation (3) effectively represents an estimate of the

“center of mass” of the transported energy but provides no

information about its angular distribution around the sensor.

The normalized transport velocity (NTV) is a quantity that

provides this second order information about the acoustic

field. For the same two-dimensional vector sensor assumed

for Eq. (3), the NTV is defined by the ratio between the

active intensity and the energy density of the field

U T; fð Þ ¼
2q0c C2

x T; fð Þ þ C2
y T; fð Þ

h i1=2
� �

q2
0c2 Vx T; fð Þ

�� ��2 þ Vy T; fð Þ
�� ��2D E

þ P T; fð Þ
�� ��2D E ;

(4)

where q0 and c are the density and sound speed in the

medium, respectively (Mann et al., 1987; D’Spain et al.,
1991). Equation (4) is normalized such that the NTV lies

between 0 and 1. Although ideally, the NTV should be com-

puted using particle velocity measurements along all three

spatial axes, when measuring low-frequency sound in a

shallow-water acoustic waveguide only a small fraction of

the total acoustic energy is transported vertically (along the

z axis) into the ocean floor. Under these circumstances, a

relatively accurate NTV can be obtained on a two-

dimensional sensor using only particle velocity measure-

ments along the horizontal axes. A NTV close to 1 implies

that most of the acoustic energy traveling through the mea-

surement point is clustered around the dominant azimuth.

Such would be the case for a single azimuthally compact

source, such as a whale or a ship whose signal-to-noise

ratio (SNR) is high. By contrast, a NTV of 0 indicates that

no net acoustic energy is being transported through the

measurement point, which implies either no acoustic

energy is present at all, or equal amounts of energy are

being propagated from opposite directions, as is the case

for a standing wave. Thus, low transport velocity occurs in

the presence of ambient fields that are either isotropic or

azimuthally symmetric.

III. ILLUSTRATIVE DATASET: MAUI 2020

A DASAR (directional autonomous seafloor acoustic

recorder) model “C” is an autonomous underwater recording

package equipped with a DIFAR vector sensor, which is

itself composed of an omnidirectional pressure sensor (149

dB re 1 lPa/V at 100 Hz sensitivity) and two particle motion

sensors capable of measuring the x and y components of par-

ticle velocity (Greene et al., 2004; Thode et al., 2012). The

signals measured on each of the three channels were sam-

pled at 1 kHz with sensors that have a maximum measurable

acoustic frequency of 450 Hz.

The sensitivity of the directional channels, when

expressed in terms of plane wave acoustic pressure

(–243.5 dB re m/s equates to 0 dB re 1 lPa), is 146 dB re

1 lPa/V at 100 Hz. The sensitivity of all channels increases

by þ6 dB/octave (e.g., the sensitivity of the omnidirectional

channel is 143 dB re 1 lPa/V at 200 Hz), since the channel

inputs are differentiated before being recorded. These values

were measured from two DASARs calibrated at the U.S.

Navy’s underwater acoustic test facility TRANSDEC in San

Diego in 2008. A finite impulse response (FIR) equalization

filter was applied to recorded data to recover the original

spectrum.

Between March and July 2020, three DASARs labeled

A, B, and C were deployed along the south facing coast of

western Maui, capturing the last couple of months of the

humpback whale breeding season. The instruments were

spaced by approximately 3 km in a line running from the

northwest (DASAR A) to the southeast (DASAR C) as

shown in Fig. 1 at depths of approximately 20 m (Google).

The DASARs were lowered to the ocean floor from a small

vessel using a rope, and thus, the orientation of the package

on the ocean floor could not be controlled and had to be

measured acoustically. Using the same calibration technique

as Thode et al. (2021), the small vessel was driven clock-

wise and counterclockwise around each DASAR after its

deployment. From the global positioning system (GPS)

position of the boat and the associated estimated acoustic

azimuths, the clock offset between the GPS and the sensor

data could be inverted, along with the seafloor orientation of

the sensors’ particle velocity axes. Additionally, this proce-

dure was used to estimate a 7.61� median uncertainty for

dominant azimuth estimates. The details of the orientation

calibration are discussed in the Appendix.

In this study, 24 h of data starting from midnight on

April 18, 2020, are presented and analyzed. This time win-

dow, which has fewer whales present than earlier in the

breeding season, was chosen because individual tracks are

easily visually distinguishable.

IV. TRACKING ALGORITHM

A. Time-frequency representation of directional
metrics

As shown in Eqs. (3) and (4), both the dominant

azimuth u and NTV can be associated with each time-

frequency bin ðT; f Þ of a spectrogram, allowing these quanti-

ties to be displayed as an image. In the dominant azimuth

representation–the azigram–the color of each pixel is associ-

ated with a given geographical azimuth. In the NTV
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representation, the color of each pixel corresponds to a value

between 0 and 1. Figure 2 shows the spectrogram, azigram,

and NTV of 30 s of data from DASAR B, starting at 2:24

UTC-10 on April 18, 2020. While the spectrogram suggests

the presence of multiple humpback whales singing simulta-

neously, it does not allow straightforward association of

song units to individual whales [Fig. 2(a)]. The azigram dis-

play, however, reveals distinct individual whales based on

their color/azimuth [Fig. 2(b)]. In this plot, the color scale

has been restricted between 100� and 350� azimuth, an

arrival sector that points away from shore (see Fig. 1). The

NTV time-frequency representation [Fig. 2(c)] shows that

whale calls have high NTV values, as would be expected

from a spatially compact acoustic source.

B. Identifying azimuthal tracks over long intervals

The number of singing whales and their azimuths can

be estimated at any given time from the statistical distribu-

tion of u. Let hhðDThÞ be defined as a histogram that counts

the number of observations of uðT; f Þ that fall within azi-

muthal bin of center h and width dh within a time interval

DTh. Thus, hh estimates the distribution of azimuths mea-

sured across all time-frequency bins in the azigram. Note

FIG. 1. (Color online) Satellite image indicating the position of DASARs A, B and C, deployed between March and July 2020 off the western coast of

Maui. (Reprinted from source: Google).

FIG. 2. (Color online) Spectrogram: (a) azigram, (b) normalized transport velocity, (c) over a 30 s time window starting at 2:24 UTC-10 on DASAR B. The

color scale for (a) is in terms of power spectral density (dB re lPa2/Hz), while the color scale for (b) is in terms of geographic azimuth relative to geographic

north. All three subplots are computed using window and FFT lengths of 256 samples with 90% overlap and no time-averaging of the FFTs.
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that the histogram time window DTh should be long enough

for the azigram to include whale calls from all currently

singing whales, and short enough for any shifts in an ani-

mal’s azimuth to be negligible. For identifying humpback

whale songs in this dataset, a time window DTh ¼ 60 s was

sufficient. To minimize contributions to hh from diffuse

background noise and other non-directional sources, a NTV

threshold can be applied so that any observation uðT; f Þ
associated with a NTV below a value cU is discarded from

the histogram. For example, the histogram computed from

Fig. 2(b) would only be computed with azimuthal values

whose NTV is above cU in Fig. 2(c). The resulting filtered

histogram HhðDThÞ emphasizes azimuths that are associated

with highly directional compact sources, such as whales and

boats. Hh is normalized by its maximum value so that the

bin associated with the most likely azimuth is always scaled

to 1. Figure 3 displays sample histograms, before and after

applying the NTV threshold and normalization, illustrating

how this filtering enhances the azimuths associated with

four distinct whales.

Hh can be plotted as a function of both time and azi-

muth by stacking histograms into an image which will be

referred to as “azimuthal histogram display” (AHD). This

representation allows identification of continuous tracks

from discrete sources, such as whales and boats, over longer

time periods. These “azimuthal tracks” are not to be con-

fused with the final 2D localized tracks which correspond to

a sequence of positions (latitude and longitude) for a given

whale. Figure 4 displays the AHDs for all three DASARs

over a 24 h time window starting at midnight on April 18,

2020. Also, shown in Fig. 4 is the unfiltered AHD from

DASAR C, illustrating how the NTV filtering and normaliza-

tion improves the quality of the azimuthal tracks. Whales and

small boats are easily distinguishable by the slope (azimuthal

rate) of their azimuthal tracks. Because they are generally

louder and thus typically more distant from the sensors, the

azimuthal rate of whales is low, on the order of several

degrees per hour. By contrast, small boats generally travel

faster and need to be closer to a DASAR to be detected, thus,

displaying higher azimuthal rates and producing tracks that

are much shorter (on the order of minutes) and steeper

(nearly vertical lines in Fig. 4). The AHDs in Fig. 4 also indi-

cate that whale song only arrives from between approxi-

mately 100� and 350� (i.e., away from shore), while boat

tracks can arrive from any direction, including from the

direction of the coastline.

To localize multiple individual whales over time, azi-

muthal tracks from the same whale need to be linked on at

least two DASARs. The deployment configuration is such

that if a whale is only detected on two of the three DASARs,

as it is sometimes the case, DASAR B (the middle instru-

ment) will always be involved. The practical problem to

solve here is thus, to determine which, if any, of the azi-

muthal tracks from DASAR B are associated with tracks

from DASARs A and/or C.

C. Manual tracing of azimuthal tracks

Tracing azimuthal tracks is a problem that should be

possible to automate, but for the purposes of the current

study, tracks are traced manually from the AHDs of all three

DASARs between midnight and 3:00 UTC-10 on April 18,

2020. Let the nth azimuthal track on DASAR a be denoted

HnaðtÞ. Figure 5 shows both the AHDs and resulting traced

tracks. These sample tracks have been labeled such that

tracks on different DASARs that share the same number are

associated with the same whale (Sec. IV D explains how

traces from the same whale are identified between

DASARs). The tracks show six distinct whales; five are

FIG. 3. (Color online) Raw histogram hh and filtered histogram Hh at 2:24 UTC-10. These histograms estimate the distribution of azimuths over a time

window DTh ¼ 60 s using bin width dh ¼ 2�, and illustrate how NTV thresholding (cU ¼ 0:9) enhances the azimuthal peaks associated with (at least) four

distinct humpback whales. The azigrams used to compute these histograms have window and FFT lengths of 256 samples with 75% overlap, and 1 s time-

averaging of the FFTs.
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detected on all three DASARs, while one is detected on

DASARs B and C only (whale 6). The time resolution of the

azimuthal tracks is 1 min.

D. Azigram thresholding

Image thresholding can be applied to any azigram to cre-

ate a binary image based on an azimuthal sector of width du,

thus, allowing whale calls arriving from a specific direction

to be isolated on different DASARs. This process, defined

here as “azigram thresholding”, works as long as any two

singing individuals are separated by at least an angle du=2.

To enhance the thresholded image, a 2D 3 � 3-pixel median

filter (Huang et al., 1979) is applied to remove speckle com-

ponents of the image.

For any given time and DASAR, the azimuth associated

with track HnaðtÞ can be used to threshold the corresponding

azigram on sensor a and isolate the song units of whale n.

Figure 6 demonstrates examples of four contemporary whale

songs extracted from DASARs B and C. The 30 s time win-

dow presented here corresponds to the first half of the histo-

grams shown in Fig. 3, and thus, shows the same four whales.

E. Matching azimuthal tracks between DASARs

Let BaðT; f Þ and BbðT; f Þ be two binary images covering

a same time window of length DTr, obtained from applying

azigram thresholding to DASARs a and b; respectively. The

azimuthal sector used to produce the images may differ

between sensors (e.g., Fig. 6). The similarity of the two

images can be quantified by taking the maximum value of the

cross correlation between Ba and Bb along time, expressed as

R ¼ max
s

X
f

X
T

Ba T; fð ÞBb T þ s; fð Þ
( )

; (5)

where s is the cross correlation time delay. R can be normal-

ized into a “cross correlation score” as

R ¼ 100

max ½Pa; Pb�
� �R; (6)

where Pa and Pb are the total number of positive pixels shared

by Ba and Bb, respectively. Equation (6) normalizes the cross

correlation score between any two images to lie between

0 and 100. Cross correlating binary images is conceptually

similar to “spectrogram correlation” methods used to detect

stereotyped baleen whale calls (Mellinger and Clark, 2000).

For any time window that reports azimuthal tracks on

two DASARs, the likelihood of these tracks being related can

be assessed by computing their cross correlation. The time

window used for the cross correlation DTr should be long

enough to include songs from all the whales being tracked,

and short enough for their azimuths to remain constant to

within the azimuthal sector du. For comparing humpback

whale calls in this dataset, a time window of DTr ¼ DTh

¼ 60 s and an azimuthal sector of du ¼ 15� (which corre-

sponds to the azimuthal uncertainty derived in the Appendix)

was sufficient. By computing the median score of each cross-

track combination across the portion of the two tracks that

overlap temporally, the likelihood of any two azimuthal tracks

being from the same whale can be identified. As an example,

Fig. 7 shows the cross correlation scores between H1C and all

FIG. 4. (Color online) Azimuthal histogram displays for DASARs A, B, and C on April 18, 2020. These plots reveal azimuthal tracks of both whales (longer

and smoother) and boats (quasi-vertical lines). The bottom plot shows the unfiltered AHD for DASAR C, illustrating how the filtering improves the visibility

of the azimuthal tracks. The parameters used here are the same as those used to compute the histograms in Fig. 3.

J. Acoust. Soc. Am. 151 (1), January 2022 Tenorio-Hall�e et al. 131

https://doi.org/10.1121/10.0009165

https://doi.org/10.1121/10.0009165


six tracks from DASAR B. The median scores clearly indicate

that H1B is the most likely track associated with the reference

track H1C. The regular troughs in the cross correlation score

occur when the whale stops singing while it surfaces to

breathe, approximately every 15 min.

Following this procedure, the median scores for all

combinations of tracks between DASAR B and DASARs A

and C can be used to create confusion matrices, as illustrated

in Fig. 8. The correct associations (along the diagonal of the

confusion matrices) consistently produce the highest median

scores. Note that when comparing track H6B to tracks from

DASAR A (bottom row of left panel in Fig. 8), all median

scores are low, which is, expected since whale 6 is not

detected on DASAR A (i.e., H6B has no match on DASAR

A). Based on this analysis, a score above 15 is associated

with a correct match between tracks.

V. LOCALIZATION AND TRACKING RESULTS

The whales whose azimuthal tracks were extracted and

matched in Sec. IV are used to demonstrate the 2D tracking

results. The 2D localization method used in this study relies

FIG. 5. (Color online) AHDs and manually selected azimuthal tracks/traces from DASARs A, B, and C between midnight and 3:00. The azimuthal traces

shown here have been labeled such that tracks sharing the same number are associated with the same whale. The time resolution of these tracks is 1 min.

FIG. 6. (Color online) Azigrams and associated binary images (thresholded azigrams) obtained by applying azigram thresholding to DASARs B and C to

isolate calls from four whales. The azigrams were computed using the same parameters as used for Fig. 2. The center of the azimuthal sectors of width

du ¼ 15� is displayed in red on each binary image. The 30 s time window presented here corresponds to the first half of the histograms shown in Fig. 3, and

thus, shows the same four whales.
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on triangulation from at least two DASAR azimuthal mea-

surements and allows estimating a localization precision if

at least three measurements are available. This approach is

based on (Lenth, 1981) and has already been used to track

bowhead whales in several studies involving DASARs

(Greene et al., 2004; Blackwell et al., 2007; Thode et al.,
2012). Here, a 2D “localized track” refers to a sequence of

latitudes and longitudes derived from the linked azimuthal

tracks of a same whale between distinct vector sensors.

Individual localizations are therefore not linked to specific

song units, but rather have the same 1 min temporal resolu-

tion as the azimuthal tracks extracted from the AHDs.

Up to three DASARs are available in this dataset. Thus,

at any given time, the number of available azimuth

measurements N (from the azimuthal tracks) for a whale lies

between 0 and 3, N 2 ½0; 3�. A 2D whale track starts when-

ever N � 2 and ends if N < 2. Over time periods where

N ¼ 3, the localization uncertainty is also computed for

each localization. Figure 9 shows the 2D localized tracks of

all six whales with a localization interval of 1 min. Using

the method from Greene et al. (2004), the 90% confidence

ellipse is computed and displayed every 10 min over time

periods whenever N ¼ 3. The location uncertainty can be

computed for portions of all tracks with the exception of

whale 6, which is only detected on DASARs B and C.

The track from whale 1 shows particularly good resolu-

tion and shows the animal traveling towards the southeast.

The direction of travel can be inferred from the azimuthal

FIG. 7. (Color online) (Top) Reference azimuthal track H1C (dashed black line) compared to all six tracks from DASAR B (solid lines). These are the same

manually traced tracks shown in Fig. 5. (bottom) Cross correlation scores [Eq. (6)]for tracks on DASAR B, when compared with H1C. The median scores of

each comparison, which are displayed in the bottom legend, suggest that H1B is the best match with reference track H1C, as it has the highest median score.

The cross correlation time window and azimuthal sector width used here are DTr ¼ 60 s and du ¼ 15�, respectively.

FIG. 8. (Color online) Confusion matrices for all combinations of azimuthal tracks between DASAR B and DASARs A and C. Each grid point in these

matrices represents a track combination and is computed as the median value of their normalized cross correlation scores [Eq. (6)]. The correct associations

of azimuthal tracks along the diagonal consistently show the highest scores. The parameters used here are the same as those from Fig. 7.
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tracks in Fig. 6. During the first part of the track, the whale

is directly in front of DASAR B (about 2.5 km off the coast)

and is detected on all three instruments. As the whale travels

southeast, the range uncertainties grow larger, since the tri-

angulated bearings cross at shallower angles. Eventually, at

2:28, when the whale is about 10 km away from DASAR A,

it is only detected on DASARs B and C, and no additional

localization uncertainties can be estimated. Using the first

hour of the localized 2D track from whale 1 (when the ani-

mal is directly in front of DASAR B), the swimming speed

can be derived and displayed in Fig. 10. The reported aver-

age swim speed of approximately 2 km/h is consistent with

previous studies of singing whales (Frankel et al., 1995;

Noad and Cato, 2007). The azigram cross correlation score

[Eq. (6)] between the tracks from whale 1 on DASARs B

and C is also displayed in Fig. 10 to show when the whale is

singing (high score) and when it is surfacing to breathe (low

score). Comparing the swim speed to the dive cycle reveals

that the two appear to be correlated, with the whale display-

ing the largest swimming speed immediately after beginning

a new dive.

VI. DISCUSSION

A. Localization performance and limitations

Because of the intrinsic uncertainty in the dominant azi-

muth estimates, the performance of the 2D localization tech-

nique is highly dependent on the relative location of the

source to the vector sensors and the deployment geometry

itself. For this specific configuration of the DASARs

arranged linearly along the coast, whale positions that are a

few kilometers to the southwest of DASAR B produce the

best results because (1) whales are detected on all three

DASARs, and (2) the azimuthal beams from all three

DASARs intersect at steep angles. This is the case for

approximately the first hour of the 2D localized track from

whale 1 in Fig. 9. As a whale moves farther offshore, the

SNR of its songs decreases along with the precision of the

azimuth estimates and thus, the localization precision.

Similarly, whenever whales lie along the line connecting

sensors of this nearly linear array, the location uncertainties

also become larger since the triangulated azimuths intersect

at shallower angles. Furthermore, whales that are present

near the ends of the linear array are often detected on only

the two closer DASARs. While the coastline deployment

has practical advantages in terms of logistics (e.g., shallow

water depth and proximity to a harbor), the quality of the 2D

localizations could be greatly improved by placing one or

multiple DASARs farther away from the coast in deep

water, or on the coast of Lanai, to define a triangular array

perimeter.

B. Azimuthal track matching

The method used to compare and match azimuthal

tracks across DASARs relies on cross correlation of binary

images obtained from azigram thresholding. While the

example presented here is idealized (each azimuthal track

from DASAR B has a unique matching track on at least one

of the other two DASARs), identifying each matching track

is straightforward (Fig. 8). The main potential weakness of

this approach is its inability to differentiate between two

whales that have the same azimuth on a given DASAR.

Taking Fig. 7 as an example, the local cross correlation

around 1:10 UTC-10 shows high scores for both tracks H1B

and H2B, which intersect at this time. Alternatively, two

matching azimuthal tracks can produce low cross correlation

scores at times when the whale stops singing while it surfa-

ces. These troughs, which can be seen approximately every

15 min in both the cross correlation scores (to track 1B in

Fig. 7) and the AHDs (Fig. 4), occasionally cause cross cor-

relation scores with the wrong azimuthal track to become

relatively high (as seen from the two cross correlation spikes

for track H3B, around 00:24 and 00:40 UTC-10). Despite

these potential limiting factors, when considering the entire

azimuthal tracks and their median scores, the track from the

correct whale (track H1B) clearly produces the highest

median score. Therefore, this technique can successfully

link two tracks from a same whale as long as (1) it is singing

throughout the majority of the azimuthal track, and (2) the

majority of its tracks are azimuthally unique on each

DASAR.

An alternative method for matching azimuthal tracks

from the same whale on multiple DASARs would be to

attempt localizing every combination of tracks, and making

a decision based on the uncertainty of the resulting 2D local-

ized tracks, an approach dubbed “localize-before-detect”.

Indeed, the localization for the correct set of azimuthal

tracks should produce physical 2D locations with lower

uncertainties than potential localizations resulting from the

FIG. 9. (Color online) 2D localized tracks of the six whales whose azi-

muthal tracks were extracted and matched in Sec. IV. The whale 2D loca-

tion estimates are computed every minute whenever at least two azimuthal

measurements are available (N � 2). A 90% confidence ellipse is plotted

every 10 min over time periods where three DASARs are available for the

localization (N ¼ 3).
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wrong combination of azimuthal tracks. However, this

approach requires azimuthal tracks to be present on all three

DASARs in order to compute the location uncertainties.

While this approach may be faster and effective in accu-

rately matching azimuthal tracks in conditions where whales

have clearly distinguishable trajectories, the azigram cross

correlation technique presented here is more robust as it

exploits additional features in the time-frequency domain to

link azimuthal tracks.

C. Automation and real-time implementation

To process the entire dataset in a way that is both effi-

cient and systematic, further automation of two key steps of

the tracking algorithm are required: (1) extracting azimuthal

traces from the AHDs, and (2) making association decisions

between azimuthal tracks from different DASARs based on

the median score confusion matrices (Fig. 8).

In this study, the matching problem was simplified by

having a unique track for each whale on each DASAR. In

practice, depending on how the azimuthal tracks are

obtained, the track from a single whale may be split into

multiple segments. In this case, rather than tracks being

matched one-to-one, split tracks from one DASAR may

need to be attributed to a single track from another DASAR.

Alternatively, an azimuthal track from one DASAR may

have no match on the other two (orphan track). Automating

the whale tracking method would thus require implementing

a decision-making algorithm (e.g., using thresholding) to

determine whether azimuthal tracks are related. The azi-

muthal track tracing is thus closely related to the subsequent

track matching process.

Several “multiple target tracking” (MTT) techniques

exist that should allow automatic extraction of individual

azimuthal traces from AHDs, including probability hypothe-

sis density (PHD) filtering (Gruden and White, 2020) and

graph-based approaches (Vo et al., 2010; Meyer et al.,
2018). These extraction techniques might also be imple-

mented in real-time.

D. Processing parameters and potential applications

The parameters used here were chosen specifically for

successfully identifying and matching humpback whale

songs. The histogram and azigram cross correlation time

windows, DTh and DTr, respectively, have similar require-

ments in that they both should be long enough to include

song units from all currently singing whales. However, they

need to be short enough to account for both azimuthal

changes of the source and the measurement uncertainty,

with respect to the histogram bin width dh and azimuthal

sector du. The time window of 60 s used here for both the

AHDs and azigram cross correlation is suited for the rate at

which the azimuth of whales’ changes with time. In princi-

ple, this same approach could be used to track boats. To do

so, the duration of the time windows would have to be

reduced to account for the rapid changes in azimuth.

Note that the FFT averaging (1 s) was only used when

computing the histograms. This allows reducing the vari-

ance of the azimuth estimates, which in turn, makes the azi-

muthal tracks in the AHDs sharper. Because FFT averaging

affects the shape of individual song units in the azigram

image, the cross correlation produces better results when no

FFT averaging is applied.

FIG. 10. (Color online) Swim speed of whale 1 derived from the first hour of its 2D localized track, when the whale is in front of DASAR B (top) and azi-

gram cross correlation score between the tracks from whale 1 on DASARs B and C (bottom). Here, the cross correlation score indicates when the whale is

singing (high score) and when it is surfacing to breathe (low score). Comparing the two plots shows that the swimming speed of the whale evolves in a con-

sistent fashion between surfacings.
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The high NTV threshold used here to filter the AHDs

(0.9) is designed to enhance the contributions from compact

sources, such as whales and boats. Alternatively, the diffuse

ambient noise field could be examined by removing samples

of u T; fð Þ that have a high NTV and generating AHDs that

only show contributions from low NTV samples. This

approach would allow studying the directional characteris-

tics of the diffuse ambient noise field over time. For exam-

ple, the bottom subplot in Fig. 4 indicates that much of the

diffuse ambient noise arises from the shoreline.

In the subset of data presented in this study, the number

of singing whales is such that individual whales can be dis-

tinguished. Earlier in the breeding season, however, the

number of whales is much higher, and distinguishing indi-

vidual tracks in the AHDs becomes difficult. While this

makes tracking individual whales less feasible, the over-

whelming amount of song becomes an opportunity to treat

humpback whale song as a diffuse noise source (Seger

et al., 2016). Instead of tracking individual whales, the

DASARs could be used to localize the “center of mass” of a

singing region. Furthermore, using longer time windows to

compute the NTV, the azimuthal distribution of whales

could be assessed to determine if whales are clustered or

widely distributed.

VII. CONCLUSION

This study presents a method for multi-target 2D track-

ing of continuous acoustic sources using vector sensors. The

technique, which relies on vector sensors’ ability to measure

directional quantities of the acoustic field, is demonstrated

on simultaneously singing humpback whales off western

Maui using three sensors. The extraction of azimuthal tracks

from individual whales on each sensor is possible using a

histogram representation of the azigrams (AHDs), to which

a transport velocity threshold is applied to enhance their

quality. Subsequently, the azimuthal tracks are compared

across vector sensors by cross correlating thresholded azi-

grams, allowing tracks from the same whale to be linked

between sensors. Once the azimuthal tracks are correctly

matched, individual whales can be localized and tracked in

2D (latitude and longitude) using triangulation. A position

uncertainty can be estimated whenever three azimuthal mea-

surements are available. The method was demonstrated by

tracking the position of six singing whales over 3 h. The

derived swimming speed of one whale track showed that the

swimming speed of the whale is related to its dive cycle.
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APPENDIX

Figure 11 shows the results of the optimized boat cali-

bration, along with the residual difference between the

acoustically derived and GPS-derived azimuths derived

FIG. 11. (Color online) Boat noise calibration for DASAR C. GPS-derived range of boat (top), acoustically derived and GPS-derived geographic azimuths

(middle), and azimuthal difference, after optimization (bottom). The acoustically derived azimuths were estimated between 350 and 400 Hz. The optimiza-

tion results show that the median error of the DASARs is 7.61�. For DASAR C, the x-velocity axis is 154� clockwise relative to true north and the recorder

timing offset from GPS is 4 s.
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from boat noise. Only the narrow bandwidth between 350

and 400 Hz was available for boat noise calibrations due to

the strong interference of overlapping humpback song. The

median absolute difference between the GPS and acoustic

estimates is 7.61�, and so the uncertainty of the acoustic

bearings was set to 67.5� (azimuthal sector width,

du ¼ 15�) in the azigram thresholding (Sec. IV D).
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